Hexahydroxostannate Fe, Mn, Co, Mg, Ca[Sn(OH)₆] und deren Kristallstruktur

VON H. STRUNZ UND B. CONTAG

Institut für Mineralogie (Kristall-, Mineral- und Gesteinskunde), Technische Universität Berlin, Berlin-Charlottenburg, Deutschland

(Eingegangen am 12 Januar 1960)

The synthetic compounds Fe, Mn, Co, Mg, Ca[Sn(OH)₆] have the space-group symmetry $O_h^4 - Pn3m$ with $a_0 = 7 \cdot 79$, 7 · 88, 7 · 78, 7 · 77, 8 · 13₅ Å respectively and Z = 4. The atomic parameters of Fe[Sn(OH)₆] are for 4 Sn: (b) 0, 0, 0 etc., for 4 Fe: (c) $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ etc., for 24 OH: (k) x, x, z etc. with x = 0.056, z = 0.248. There is a good agreement between observed and calculated intensities. All cations are bound to 6 (OH) in pseudooctahedral coordination.

Die Entdeckung des Germanates Stottit (Strunz *et al.*, 1958) und die 1958/59 durchgeführten ersten Versuche, entsprechende Ge- und Sn-Verbindungen künstlich herzustellen, führten zur Synthese der Verbindungen FeSn(OH)₆ (grünlich-grau), MnSn(OH)₆ (hellbraun), CoSn(OH)₆ (rosarot), MgSn(OH)₆ (weiss) und CaSn(OH)₆ (weiss). Wir erhielten diese Stannate durch Umsetzung von K₂Sn(OH)₆ mit

 $\begin{array}{c} {\rm FeCl_{2.4}\ H_{2}O,\ MnCl_{2.4}\ H_{2}O,\ CoCl_{2.6}\ H_{2}O, \\ {\rm MgCl_{2.6}\ H_{2}O \ und \ CaCl_{2.6}\ H_{2}O} \end{array}$

in wässeriger alkalischer Lösung, Filtrieren und Waschen mit Kalilauge und Wasser, sowie Trocknen bei 90 °C. Um hierbei die Oxidation von Fe²⁺ und Mn²⁺ zu vermeiden, arbeiteten wir in diesen Fällen mit Stickstoff als inerter Atmosphäre.

Die Röntgenaufnahmen der genannten 5 Substanzen sind der Aufnahme von Stottit analog (Fig. 1). Während jedoch Stottit tetragonal, mit grosser Annäherung an kubische Symmetrie, kristallisiert, lassen sich die Aufnahmen der Stannate eindeutig kubisch indizieren. Die Gitterkonstanten sind aus Tabelle 1, die Indizierungen aus Tabelle 2 ersichtlich.

Tabelle 1. Gitterkonstanten

 a_0 : experimentell nach der asymmetrischen Methode,

' a_0 ': additiv aus den Ionenradien,

 $a_0'-a_0$: Differenz,

 $\dot{x, x, z}$: für OH, gefunden durch Herausrücken der (OH) aus der Geraden

	a_0 (beobachtet)	•a ₀ ' (additiv)	$a_0' - a_0$	x	z
Fe[Sn(OH) ₆]	7·79 Å	8·18 Å	0.39	0.0562	0.248
$Mn[Sn(OH)_6]$	7.88	8.30	0.42	0.0577	0.244
$Co[Sn(OH)_6]$	7.78	8.14	0.36	0.0536	0.250
$Mg[Sn(OH)_6]$	7.77	8.02	0.25	0.0445	0.254
$Ca[Sn(OH)_6]$	8·13 ₅	8.68	0.54_{5}	0.0654	0.232

Fig. 1. Schematische Wiedergabe der Pulverdiagramme.

FeGe(OH) ₆ (tetragonal)		FeSn(OH) ₆ (kubisch)			MnSn(OH) (kubisch)		CoSn(OH) ₆ (kubisch)		MgSn(OH) ₆ (kubisch)		CaSn(OH) (kubisch)				
Nr.	I	d	hk1	Nr.	hkl	I	d	I	d	I	d	I	d	I	d
1	2	4.3420	111	1	111	5	4.437	7	4,500	5	4.444	6	4,461	4	4,629
2	10	3,7696	200	2	200	10	3.840	10	3,890	10	3,845	10	3,871	10	4.013
3	6	2.6547	220	3	220	8	2.7365	6	2.748	8	2,730	6	2.724	7	2.836
4	0.5	2,4996	221						•						
5	2	2,3815	310	4	310	3	2,4499	3	2,467	1	2,431	3	2,447	4	2,546
6	2	2,3584	103												
7	2,5	2,2683	511	5	311	4	2,3269	4	2,3484	6	2,347	6	2,325	4	2,4195
8	4	2,1667	222	6	222	4	2,2296	3	2,2492	5	2,227	3	2,228	5	2,319
9	0,5	2,0762	203												
10	1,5	2,0101	312	7	321	1	2,0728	2	2,0845	0,5	2,065	1	2,059	2	2,147
11	1,5	2,0037	213												
12	4	1,8829	400	8	400	5	1,9338	4	1,9483	4	1,927	4	1,931	5	2,010
13	2,5	1,8613	004							1 _				_	
	~	. (070		9	331	3	1,7799	2	1,7900	3	1,770	4	1,771	2	1,8465
14	0	1,6850	420	10	420	9	1,7336	1	1,7430	8,5	1,729	D	1,750	9	1,801
15	2	1,0097	204		1 00		4 5000				4 -00	6	4 500		1 4160
10	2,2	1,5509	422	11	422	l °	1, 2820	0	1,0900	9	1,562	0	1,000	•	1,0400
10	4	1,5280	224	10	= 1 /777		1 1010	-	1 5070	<u> </u>	1 406		1 1.00	,	1 5100
10	0,5	1,4490	511/555	12	511/333	4	1,4940		1,5052	2,5	1,490	4	1,409	4	1,0199
17	1,5	1,7950	140		440	1	1,)/21	1	1, 3047	, ,	1,571	-	1,000	,	1,4207
20	1	1,7277	531	12	571	1,	1 3113	7	1 3070	7	1 311	1.	1 3000	,	1 3665
22	5	1 2566	600	15	600	6	1,90%0		1, 3051		1 202	4	1 9878	5	1 3470
23	3	1,2512	006	1,1	000	ľ	1,2949	1	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	1,272	-	1,2070	,	1,,,17
24	3	1,1923	620	16	620	5	1 2270	5	1 2304	4	1 2267	3	1 2246	5	1 9704
25	2	1,1812	206		020	1	1,//	,	~,-,,.	•	.,	_	,,	,	.,_,,,
	-	*,		17	533	1	1.1855	1	1.1968	2	1,1819	1	1,1822	2	1.2362
26	4	1,1368	622	18	622	6	1,1713	5	1,1821	4	1,1699	4	1,1688	5	1,2221
27	3	1,1284	226			1									
28	2,5	1,08525	444	19	444	1	1,1125	2	1,1323	1,5	1,1204	1	1,1207	3	1,1697
				20	711/551	4	1,0895	3	1,1007	2,5	1,0877	4	1,0870	3	1,1380
29	2	1.0466	640	21	640	5	1.0789	4	1.0893	4	1.0775	4	1.0758	4	1.1250
30	2	1.0435	$640^{\alpha 1}/604$	-		_		-		-		[-	.,	-	-,,-
31	1		$604^{\alpha 2'}$ α^{1}												
32	2	1,0425	406 ²												
33	1		406~0												
34	3	1,00788	642 21	22	642	7	1,0399	7	1,0515	6	1,0392	6	1,0383	6	1,0852
35	3	1,00566	624 ⁰¹								1				
36	3		642 22			l									
37	1		624 2			1		l .			1				
38	3	1,00164	246 1			ŀ	1	1							1
39	2		246 22			1									
	[23	731	5	1,0135	5	1,0255	4	1,0117	5	1,0114	5	1,0581
	l	1	1	l I	l	1	l	1	1	1	I	l i		1	1

Tabelle 2. Indizierung der Pulverdiagramme für $Fe[Ge(OH)_6]$ und die 5 untersuchten Stannate

Als hkl-Reflexe treten, abgeschen von einer einzigen Ausnahme, nur solche mit h+k, h+l und k+l=2nauf. Der abweichende Reflex (321) ist sehr schwach, kann aber mit Sicherheit auf allen Aufnahmen beobachtet werden. Reflexe hk0 sind nur mit h+k=2nvorhanden. Somit ist die Raumgruppe O_h^4-Pn3m .

Fig. 2. Beobachtete und errechnete Intensitäten für Fe[Sn(OH)₆].

Fig. 3. Die Kristallstruktur von Fe[Sn(OH)₆].

Zur Erklärung der fast erfüllten Reflexbedingungen für ein flächenzentriertes Gitter, ist der Schluss berechtigt, dass die stark streuenden Metallionen 4 Sn^{+4} und 4 Fe^{+2} in der, in O_{h}^{4} -Pn3m möglichen flächenzentrierten Verteilung

und

(b) 0, 0, 0; 0, $\frac{1}{2}$, $\frac{1}{2}$; $\frac{1}{2}$, 0, $\frac{1}{2}$; $\frac{1}{2}$, $\frac{1}{2}$, 0 (c) $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$; $\frac{1}{2}$, 0, 0; 0, $\frac{1}{2}$, 0; 0, 0, $\frac{1}{2}$ vorliegen, während die schwächer streuenden $24(OH)^{-1}$ Ionen sich in (k) x, x, z etc. mit starker Annäherung an flächenzentrierte Verteilung befinden. Durch Vergleich der Reflexabfolge und Intensitäten mit denjenigen von Fe[Ge(OH)₆] (Fig. 1), wovon die Strukturbestimmung mit grosser Verfeinerung vorliegt (Strunz & Giglio, 1959), wird x, x, z nur wenig von $0, 0, \frac{1}{4}$ verschieden sein. Durch Vergleich der beobachteten Gitterdimensionen mit den additiv aus den bekannten Ionenradien gefundenen Werten ist für

$$Fe[Sn(OH)_6]: x=0.056, z=0.248.$$

Damit berechnen sich die in Fig. 2 angeführten Intensitäten, deren Übereinstimmung mit der experimentellen Beobachtung gut ist. Sn und Fe sind pesudooktaedrisch von 6 (OH) umgeben; die genannten Stannate sind isotyp, streng genommen homöotyp, mit Fe[Ge(OH)₆] und den von Schrewelius (1938) untersuchten Verbindungen NaSb(OH)₆ und AgSb(OH)₆. Die Formeln MnSnO₃.3 H₂O, CoSnO₃.2 H₂O etc. (Coffeen, 1953) konnten nicht bestätigt werden.

Bei der technischen Auswertung der Röntgenaufnahmen hatten wir dankenswerterweise die Hilfe von Herrn W. Stahn.

Literatur

COFFEEN, S. W. (1953). J. Amer. Ceram. Soc. 36, 207.
SCHREWELIUS, N. (1938). Z. anorg. Chem. 238, 241.
STRUNZ, H., SÖHNGE, G. & GEIER, B. H. (1958). Neues Jb. Miner., Mh. p. 85.

STRUNZ, H. & GIGLIO, M. (1959). Naturwiss. 46, 489.

Acta Cryst. (1960). 13, 603

Stacking Faults in Iron-Manganese and Cobalt-Nickel

By J. Spreadborough*

Department of Metallurgy, University Museum, Oxford, England

(Received 20 July 1959 and in revised form 15 December 1959)

The results of applying the methods which may be used to measure the fault parameters in hexagonal and cubic materials are presented and discussed for a cobalt-nickel alloy. Studies of iron-manganese alloys show that the epsilon phase faults readily; this factor may contribute to the high workhardening capacity of such alloys.

1. Introduction

Stacking faults have been measured by X-ray methods in both close-packed metallic structures (Warren & Warekois, 1955; Anantharaman & Christian, 1956; Christian & Spreadborough, 1956, 1957; Smallman & Westmacott, 1957). The work reported here is con-

* Now at Battelle Memorial Institute, Geneva, Switzerland.

cerned with faults in a Co–Ni hexagonal alloy and in the ε -phase in Fe–Mn.

The Co-Ni hexagonal alloy was chosen partly because it was thought likely to contain heavy faulting after deformation and partly because the application of the methods used previously to estimate faulting in hexagonal materials (Fourier analysis and linebreadth measurements) would be interesting for high